
Global Rate-Monotonic Scheduling with Priority Promotion ∗

Shinpei Kato†‡, Akira Takeda‡, and Nobuyuki Yamasaki‡
†Department of Electrical and Computer Engineering, Carnegie Mellon University

‡Department of Information and Computer Science, Keio University

Abstract

In this paper, we consider a multicore real-time schedul-
ing algorithm incorporating benefits of both fixed-priority
and dynamic-priority disciplines. Specifically, the algo-
rithm first assigns globally-effective priorities to real-time
tasks statically, based on the well-known Rate-Monotonic
scheduling policy. It may however change the task priorities
at runtime, only when the tasks reach the zero-laxity condi-
tion, where no slack remains until the deadline, to avoid tim-
ing violations as much as possible. Implementation simplic-
ity and response time predictability are therefore inherited
from the fixed-priority discipline, while minimal dynamic-
priorities are exploited, if necessary, to maintain the system
to be schedulable as much as possible. We also provide
a schedulability analysis and derive a schedulability test
for the algorithm. Our evaluation then demonstrates that
the algorithm outperforms the existing global fixed-priority
scheduling algorithms in terms of schedulability.

1 Introduction

The advent of multicore technology has accelerated a
better use of computing systems. Due to further successful
development of low-power chips, multicore platforms are
becoming to be used commonly even in embedded real-time
systems, where energy constraints are usually imposed. Re-
cently, the real-time systems community has therefore been
interested in extending resource management schemes into
the multicore context. In particular, much attention is being
paid to studies on multicore real-time scheduling, given the
natural need for concurrency management on multiple CPU
cores.

Traditionally, one often discusses and compares
fixed-priority and dynamic-priority scheduling algorithms.
Fixed-priority algorithms, such Rate-Monotonic (RM) [14]
and Deadline Monotonic (DM) [13], usually lead to sim-
pler system implementation and better response time pre-
dictability. On the other hand, dynamic-priority algorithms,

∗This technical report is an English-version of the article,with slight
modifications and extensions, published in the IPSJ Transactions on Ad-
vanced Computing System (ACS), Vol. 2, No. 1, pp. 64–74, March 2008.

such as Earliest Deadline First (EDF) [14] and Least Lax-
ity First (LLF) [16], likely achieve better system utilization
under deadline constraints. Other issues to be compared
between the the fixed-priority and the dynamic-priority ap-
proaches are reported in [6].

As for multicore extensions, one often discusses and
compares global and partitioned scheduling schemes. In a
global scheduling scheme, all tasks are conceptually stored
in a global queue, and at any moment themhighest-priority
tasks, if any, are scheduled onm CPU cores. Task migra-
tions may therefore be exploited. In a partitioned schedul-
ing scheme, on the other hand, each CPU core has its own
task queue. Each task is then assigned to a specific CPU
core, and is scheduled on the local CPU core without migra-
tions. Indeed, there are relative merits in the two scheduling
schemes. Global scheduling algorithms, such as Pfair [3],
LLREF [9], and EDZL [12], are potentially able to maintain
the system schedulable even with high-utilization task sets,
whereas partitioned scheduling algorithms, such as EDF-FF
[11] and EDF-FFD [15], allow us to ignore runtime over-
head and complexity regarding task migrations. The sum-
mary of the two scheduling schemes is reported in [8].

This paper presents multicore global real-time schedul-
ing with efficient priority assignments, where benefits of
both fixed-priority and dynamic-priority disciplines are in-
corporated. Specifically, we propose a scheduling algo-
rithm, called Rate-Monotonic until Zero Laxity (RMZL),
which applies a laxity-driven priority promotion strategy
adopted in the EDZL algorithm to the Rate-Monotonic al-
gorithm. The primary advantage of the RMZL algorithm
is that it provides any task sets schedulable under the Rate-
Monotonic algorithm with implementation simplicity and
response time predictability as the Rate-Monotonic algo-
rithm does, while it maintains the system to be schedula-
ble as much as the EDZL algorithm does, far beyond the
Rate-Monotonic algorithm can do.

The rest of this paper is organized as follows. Sec-
tion 2 describes our system model, including assumptions
and terminologies used in this paper. Section 3 presents the
RMZL algorithm and its properties, and Section 4 provides
its schedulability analysis. The schedulability performance
of the RMZL algorithm is evaluated through both simula-
tion studies and practice experiments in Section 5. We sum-
marize our concluding remarks in Section 6.

1

2 System Model

The system is composed ofm CPU cores. A task set
includingn tasks, denoted byτ = {τ1, τ2, ..., τn}, is given to
the system. Each taskτi is represented by a tupple (Ci ,Ti),
whereCi andTi are theworst-case execution time (WCET)
and theperiod of τi respectively. Tasks inτ are assumed
to be sorted in non-decreasing order of periods, i.e.,T1 ≤

T2 ≤ ... ≤ Tn holds. Theutilization Ui of τi is defined to
beUi = Ci/Ti , and the total utilizationU(τ) of the tasks in
τ is defined to beU(τ) =

∑

τi∈τ
Ui . In particular, we use a

word “system utilization” for U(τ)/m, which indicates the
total utilization of the tasks normalized by the number of
CPU cores.

Each taskτi produces an infinite sequence of jobs peri-
odically. Thekth job of τi is denoted byτi,k. The release
timeand thedeadlineof τi,k are denoted byr i,k anddi,k re-
spectively. Note thatdi,k = r i,k+1 = r i,k + Tk holds for any
τi,k. We also denote theremaining execution timeof τi,k at
time t by Ci,k(t). Thelaxity Li,k(t) of τi,k at timet is then de-
fined to beLi,k(t) = di,k−(t+Ci,k(t). The laxity of a job directly
reflects the degree of urgency to meet its deadline. The less
the laxity of a job is, the more the job is urgent. In partic-
ular, when the laxity of a job becomes zero, the job is said
to be in thezero-laxitycondition. The absolute value of the
laxity is also called thetardiness, when the laxity becomes
negative. The tardiness indicates the amount of time behind
the deadline.

When all CPU cores are occupied by jobs with priorities
higher than a ready jobτi,k, τi,k is said to beblocked. All
tasks are preemptive and independent of each other. No
more than one CPU core executes the same job at the same
time. Once the system begins running, no tasks join and
leave there dynamically.

A task set to be schedulable under a scheduling algo-
rithm means that all jobs in the task set are guaranteed to
scheduled by the scheduling algorithm, without any dead-
line misses. The schedulability test is a function that veri-
fies whether or not the given task set is schedulable under
the given scheduling algorithm. Any scheduling algorithms
used in hard real-time systems must contain explicit schedu-
lability test functions. In soft real-time systems, meanwhile,
explicit schedulability test functions may not be necessary,
though the tardiness of each task is desired to be bounded in
advance so that quality of service is guaranteed at a certain
level. It is also preferable for the scheduling algorithm tobe
work-conservingwhen response times are important in the
system. Here, the scheduling algorithm is said to be work-
conserving, if it has a property to ensure that the system
does not become idle in the presence of ready jobs.

3 The RMZL Scheduling Algorithm

We now present the RMZL algorithm. The RMZL al-
gorithm applies the laxity-driven priority promotion strat-
egy adopted in the EDZL algorithm to the Rate-Monotonic

1. while TRUEdo
2. if some jobτi, j is releasedthen
3. assign the Rate-Monotonic priority toτi, j ;
4. end if
5. if the laxity of some jobτi,k becomes zerothen
6. assign the highest priority toτi, j ;
7. end if
8. if there are more thanm jobs in the ready queuethen
9. schedule them highest-priority jobs;

10. else
11. schedule all the jobs in the ready queue;
12. end if
13. end while

Figure 1. The RMZL algorithm.

algorithm. Specifically, it schedules jobs according to the
Rate-Monotonic algorithm until some jobs reach the zero-
laxity condition, and the priorities of these zero-laxity jobs
are immediately promoted to the top to avoid timing vio-
lations. Figure 1 illustrates the pseudo-code of the RMZL
algorithm. Every time some job is released, it is first as-
signed the Rate-Monotonic priority (line2-4). However, if
the laxity of some job becomes zero, priority promotion is
exploited (line 5-7). At any moment, jobs are scheduled
according to their priorities (line 8-12). It should be noted
that it depends on system implementation how to deal with
the case where more thanm jobs have the zero-laxity condi-
tion. In such a case, some job inevitably has negative laxity,
which means that the job would miss its deadline if its exe-
cution time is equal to the WCET. If we consider hard real-
time systems, this case should never happen. If we consider
soft real-time systems, on the other hand, this case may hap-
pen, and our solution is to keep jobs with negative laxity be-
ing assigned the highest priority so that they can complete
as early as possible.

Figure 2 shows a simple example that demonstrates how
the RMZL algorithm outperforms the Rate-Monotonic al-
gorithm on two CPU cores, regarding task setτ = {τ1 =
(2, 3), τ2 = (2, 3), τ3 = (2, 3)}. For simplicity, let us assume
that ties are broken in favor of lower-indexed tasks. Since
τ1 and τ2 are scheduled first,τ3 misses a deadline under
the Rate-Monotonic algorithm. However,τ3 can preemptτ2
due to the zero-laxity condition under the RMZL algorithm,
and as a result, all the tasks successfully meet deadlines.

Work-conserving property: The RMZL algorithm
is work-conserving as the Rate-Monotonic algorithm is.
Specifically, the system never becomes idle as long as there
are ready jobs. The average response time of the system is
therefore maximized. This property improves the average
response time in particular when the system load is low, as
compared to such algorithms that are not work-conserving.

Domination property: The RMZL algorithm strictly
dominates the Rate-Monotonic algorithm under the worst-
case assumption, given the fact that the RMZL algorithm
changes task priorities only when some jobs are verified to

2

1 2 30 1 2 30

(a) (b)

4 4

τ1 τ1

τ2 τ2

τ3 τ3

Figure 2. Example: (a) Rate-Monotonic
scheduling and (b) RMZL scheduling.

1 2 30

(a)

4 1 2 30

(b)

4

deadline miss!

τ1 τ1

τ2 τ2

τ3 τ3

Figure 3. Example: (a) Rate-Monotonic
scheduling and (b) RM-US scheduling.

reach the zero-laxity condition. In other words, any task sets
that are schedulable under the Rate-Monotonic algorithm
are also schedulable under the RMZL algorithm, if all the
execution times are equal to the WCETs. Hence, the RMZL
algorithm inherits all the properties of the Rate-Monotonic
algorithm, such as implementation simplicity and response
time predictability. Meanwhile, another global schedul-
ing algorithm derived from the Rate-Monotonic algorithm,
called RM-US [1], does not dominate the Rate-Monotonic
algorithm. The RM-US algorithm statically assigns the
highest priority to such tasks that have utilization greater
thanm/(3m− 2). Figure 3 shows a simple example where
task setτ = {τ1 = (1, 2), τ2 = (3, 4), τ3 = (3, 4)} is schedula-
ble under the Rate-Monotonic algorithm, while it is not un-
der the RM-US algorithm. As one can see, all the tasks are
successfully scheduled by the Rate-Monotonic algorithm.
However,τ1 misses a deadline under the RM-US algorithm,
sinceτ2 andτ3 are scheduled in priority due to their utiliza-
tion.

Comparison with EDZL: We now compare the RMZL
algorithm with the EDZL algorithm. Both the two algo-
rithms use the same priority promotion strategy. However,
the RMZL algorithm is more predictable than the EDZL al-
gorithm in terms of response times, since it is based on the
fixed-priority approach. The RMZL algorithm is also ex-
pected to accept more task sets than the EDZL algorithm

by schedulability test, given that the Rate-Monotonic algo-
rithm is able to accept more task sets than the EDF algo-
rithm by schedulability test [4]. We show this effect by sim-
ulation studies in Section 5.

4 Schedulability Analysis

In this section, we present the RMZL schedulability
analysis. Our approach is based on the response time analy-
sis (RTA) for globally-scheduled systems [4] and the EDZL
schedulability analysis [10]. Before providing our analysis,
we define the following terms and terminologies.

Definition 1 (Interference). Interference Ik(a, b) to taskτk
in interval [a, b) is a cumulative length of intervals in[a, b),
for which τk is blocked by higher-priority tasks and can-
not execute. The contribution of each individual taskτi to
Ik(a, b) is then denoted by Ii

k(a, b).

Definition 2 (Work). Work Wk(a, b) for taskτk in interval
[a, b) is the total amount of time that must be consumed by
τk in [a, b) under the given timing constraints.

Regarding the interference, we provide Lemma 1.

Lemma 1. All global scheduling algorithms hold Condi-
tion (1), where x is any positive value.

Ik(a, b) ≥ x⇔
∑

i,k

min
(

I i
k(a, b), x

)

≥ mx (1)

Proof. The proof is subject to the EDF schedulability anal-
ysis provided by Lemma 4 in [5]. �

Our analysis proceeds as follows. LetJ∗k be a job of each
taskτk, which executes with the worst-case response time.
Let alsoRub

k be the upper bound on the response time of
τk. We first obtain the upper boundIub

k on the interference
to J∗k in interval [r∗k, r

∗
k + Rub

k]. We then deriveRub
k based

on Iub
k andCk. Note that the lower boundLlb

k on the laxity
of a job of τk is computed byRub

k − Tk. According to the
RMZL algorithm, if more thanm jobs reach the zero-laxity
condition at the same time, Hence, the necessary condition
for the RMZL algorithm to cause deadlines to be missed is
thatLlb

k ≤ 0 is true form+ 1 tasks and one of them strictly
holds Llb

k < 0. In fact, this is the same condition for the
EDZL to cause deadlines to be missed, as presented in [10].

Now, we obtainIub
k as follows.

Lemma 2. The contribution Iik(a, b) of τi to the interference
to τk in interval [a, b) does not exceed work Wi(a, b) of τi in
[a, b).

Proof. A task interfere with another only when it is exe-
cuted. It is therefore trivial from the definitions of the inter-
ference and the work. �

3

Lemma 3. Work Wub
i (r∗k, r

∗
k + Rub

k) of task τi in interval
[r∗k, r

∗
k + Rub

k), which interferes with taskτk is computed by
Equation(2), when task setτ = {τ1, ..., τn} is scheduled by
theRMZL algorithm on m CPU cores, where ni(Rub

k) is ob-
tained by Equation(3).

Wub
i (r∗k, r

∗
k + Rub

k) =Wub
i (Rub

k)

=























ni(Rub
k)Ci

+min(Ci ,Rub
k + Ti −Ci − ni(Rub

k)Ti) (i < k)
Ci (i > k)

(2)

ni(Rub
k) =



















Rub
k + Ti −Ci

Ti



















(3)

Proof. We first consider taskτi that has a longer period than
taskτk, i.e., i > k. According to the RMZL algorithm, in
order forτi to interfere withτk, it is necessary forτi to have
zero-laxity, sinceτi is assigned a lower priority when its
laxity is positive. The work ofτi is therefore maximized
when each job ofτi executes forCi time units at the very end
of the period. As seen in Figure 4, the work ofτi , indicated
by the shaded area in Figure 4, is no greater thanCi . Hence,
Work Wub

i (r∗k, r
∗
k + Rub

k) must satisfy Condition (4).

Wi(r
∗
k, r
∗
k + Rub

k) ≤ Ci (4)

We next consider taskτi that has a shorter period thanτk,
i.e., i < k. It is clear from the prior discussion that the work
of a job ofτi which has a release time before and a deadline
within the interval under consideration is maximized when
the job executes forCi time units at the very end of the
period. The work of a job ofτi which has a release time
within and a deadline after the interval under consideration
is, on the other hand, maximized when the job executes for
Ci time units at the very beginning of the period. Now, we
claim that the work ofτi is maximized when the job ofτi
which has a release time before and a deadline within the
interval under consideration is released at timer∗k; namely
whenJ∗k is released at the same time, as shown in Figure 5.
Figure 5 implies that the numberni(Rub

k) of jobs which can
execute forCi time units completely in [r∗k, r

∗
k+Rub

k) is given
by Equation (3).

The work of a job executing at the end of the interval un-
der consideration, indicated by the shaded area in Figure 5
is bounded by min(Ci ,Rub

k + Ti − Ci − ni(Rub
k)Ti). Hence,

Condition (5) must hold.

Wi(r∗k, r
∗
k + Rub

k)

≤ ni(Rub
k)Ci +min(Ci ,R

ub
k + Ti −Ci − ni(Rub

k)Ti) (5)

The lemma is thus true. �

The upper bound on the contribution of each taskτi to
the interference to taskτk in interval [r∗k, r

∗
k + Rub

k) is now

Ti

rk*

Rk
ub

τi

τk

Figure 4. Case i > k

T i

τi

τk

...

T i Ci-

rk*

Rk
ub

Figure 5. Case i < k

known from Lemma 3. According to the definition of the
interference, however, the interference toτk is no greater
thanRub

k − Ck. Otherwise, the response time ofτk would
exceedRub

k . This observation leads to Lemma 4.

Lemma 4. The response time of task does not exceed Rub
k ,

if Condition(6) is satisfied.

∑

i,k

min(I i
k(R

ub
k),Rub

k −Ck + 1) < m(Rub
k −Ck + 1) (6)

Proof. By Lemma 1, the following condition holds if Con-
dition (6) holds.

Ik(Rub
k) < (Rub

k −Ck + 1)

Hence, the interference toJ∗k is no greater thanRub
k −Ck,

andJ∗k can complete byRub
k by the definition of the interfer-

ence. �

Lemma 4 implies that the contribution of each taskτi
to the interference to taskτk is bounded bymin(Wub

i ,R
ub
k −

Ck + 1). The above discussion leads to the upper bound on
the response time of each task under the RMZL algorithm
as follows.

4

Theorem 1 (RTA for RMZL). The upper bound on the re-
sponse time of taskτk under theRMZL algorithm is ob-
tained by solving fixed-point iteration for Expression(7) be-
ginning with Rub

k = Ck, whereÎ i
k(R

ub
k) is computed by Equa-

tion (8) and Wub
i (Rub

k) is given by Equation(2).

Rub
k ← Ck +





















1
m

∑

i,k

Î i
k(R

ub
k)





















(7)

Î i
k(R

ub
k) = min(Wub

i (Rub
k),Rub

k −Ck + 1) (8)

Proof. We provide proof by contradiction. Specifically, we
assume that the convergent value ofRub

k is greater than the
response time ofτk. The convergent value ofRub

k is com-
puted by the following expression.

Rub
k = Ck +





















1
m

∑

i,k

min(Wub
i (Rub

k),Rub
k −Ck + 1)





















By Lemma 2,Wub
i (Rub

k) ≥ I i
k(r
∗
k, r
∗
k + Rub

k) holds. There-
fore, the following condition must hold.

Rub
k ≥ Ck +





















1
m

∑

i,k

min(I i
k(R

ub
k),Rub

k −Ck + 1)





















By our assumption and Lemma 4, the following condi-
tion must also hold.

Rub
k ≥ Ck +

⌊

1
m

m(Rub
k −Ck + 1)

⌋

= Rub
k + 1

This is a contradiction. The theorem is thus true. �

As discussed before, the necessary condition for the
RMZL algorithm to cause deadlines to be missed is that
more thanm tasks satisfyLlb

k ≤ 0 and one of them strictly
holdsLlb

k < 0. Finally, the schedulability test for the RMZL
algorithm is derived as follows.

Theorem 2(RMZL test). Task setτ = {τ1, ..., τn} is schedu-
lable under the RMZL algorithm on m CPU cores, unless
at least m+ 1 tasks satisfy Condition(9) and one of them
strictly holds< in Condition(9), where Rub

k is given by The-
orem 1.

Llb
k = Tk − Rub

k ≤ 0 (9)

The schedulability test derived in Theorem 2 can be im-
proved. If the response time ofτi which interfere with task
τk is known, the contribution ofτi to the interference to
τk can be underestimated by taking into account the lower
bound on the laxity ofτi . Figure 6 depicts the case where
Llb

i is taken into account. Now, Equation (2) and (3) can be
rewritten as follows.

Wub
i (r∗k, r

∗
k + Rub

k) =Wub
i (Rub

k)

=























ni(Rub
k)Ci +min(Ci ,

Rub
k + Ti −Ci − Llb

i − ni(Rub
k)Ti) (i < k)

Ci (i > k)
(10)

τ i

τk

...

L i
lbT i Ci-

T i

rk*

Rk
ub

Figure 6. Case i < k in the improved analysis.

ni(Rub
k) =



















Rub
k + Ti −Ci − Llb

i

Ti



















(11)

The refined upper bound on the response time ofτk is
given by Theorem 3.

Theorem 3(Refined RTA for RMZL). The upper bound on
the response time of taskτk under theRMZL algorithm is
obtained by solving fixed-point iteration for Expression(7)
beginning with Rub

k = Ck, where Î i
k(R

ub
k) is computed by

Equation(8) and Wub
i (Rub

k) is given by Equation(10).

Theorem 4(Refined RMZL test). . Task setτ = {τ1, ..., τn}
is schedulable under the RMZL algorithm on m CPU cores,
unless at least m+ 1 tasks satisfy Condition(9) and one of
them strictly holds< in Condition(9), where Rub

k is given by
Theorem 3.

Tardiness Bound: In soft real-time systems, or in any
system where soft real-time tasks exist, the tardiness from
the deadline is desired to be bounded for each soft real-time
task. Under the RMZL algorithm, the tardiness bound is
easily derived by using the upper bound on the response
time.

Theorem 5 (Tardiness bound for RMZL). The tardiness
bound for taskτk executing in the system scheduled by the
RMZL algorithm on m CPU cores is obtained by Equa-
tion (12), where Rub

k is given by Theorem 3.

tardiness(τk) = Rub
k − Tk (12)

5 Evaluation

We now provide a quantitative evaluation of the RMZL
algorithm. Our performance metric is thesuccess ratiode-
fined by the following formula, which indicates the abil-
ity of a scheduling algorithm to successfully schedule given
task sets.

Success Ratio=
of successfully scheduled task sets

of scheduled task sets

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 7. Simulation results for schedulability
test on 2 CPU cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 8. Simulation results for schedulability
test on 4 CPU cores.

In our evaluation, we compare the RMZL algorithm with
the two well-known fixed-priority scheduling algorithms:
Rate-Monotonic and RM-US. We also in part compare it
with the EDZL algorithm that adopts the same priority pro-
motion strategy as the RMZL algorithm under a dynamic-
priority discipline.

5.1 Simulation Studies

We first study the performance of the RMZL algorithm
through simulations. Each simulation generates a random
task set including 1000 tasks. The system load to be pro-
duced by the task set is determined by two parameters: the
numberm of CPU cores and the system utilizationUsys.
Due to space constraints, we show only the results with lim-
ited characteristics of task sets as follows. For each task set
τ, the utilizations of the tasks are uniformly set within range
[0.01, 1.0] so thatUsys =

∑

τi∈τ
Ui/m is satisfied. The task

periods are also uniformly set within range [100, 3000], and
the WCET for each taskτi is computed byCi = UiTi .

Figure 7, 8, 9, and 10 show the simulation results for the
schedulability test ability of each algorithm on 2, 4, 8, and
16 CPU cores respectively. Here, task sets are said to be

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 9. Simulation results for schedulability
test on 8 CPU cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 10. Simulation results for schedulabil-
ity test on 16 CPU cores.

successfully scheduled if they are verified to be schedulable
by the schedulability test. For simplicity, the schedulabil-
ity tests presented in [2] are used for the Rate-Monotonic
and the RM-US algorithms. Those for the RMZL and the
EDZL algorithms are respectively provided by Theorem 4
in this paper and Theorem 3 in [10]. These results demon-
strate that the RMZL algorithm outperforms the traditional
fixed-priority scheduling algorithms, i.e., Rate-Monotonic
and RM-US in terms of hard real-time schedulability test
guarantees. Since the current state of the art in global
scheduling analysis is still pessimistic in particular when
a large number of CPU cores is given, the absolute success
ratios decrease as the number of CPU cores increase. Es-
pecially, the Rate-Monotonic algorithm suffer from a larger
number of CPU cores due to the well-known Dhall’s ef-
fect [11]. One can also observe that it is competitive with
and even better for a large number of CPU cores than the
EDZL algorithm. Such superiority comes from the fact that
the global scheduling analysis is less pessimistic for fixed-
priority algorithms than dynamic-priority algorithms [4].

Figure 11, 12, 13, and 14 show the simulation results
for the runtime scheduling ability of each algorithm on 2,
4, 8, and 16 CPU cores respectively. Here, task sets are

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 11. Simulation results for runtime
scheduling on 2 CPU cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 12. Simulation results for runtime
scheduling on 4 CPU cores.

said to be successfully scheduled if they are actually sched-
uled without any deadline misses in 1000000 simulation
time units. As compared to the schedulability test results,
all the algorithms achieve much higher success ratios. This
means that there are still huge gaps between analysis and
practice, which should be mitigated in the future. One can
remark that the RMZL algorithm is competitive with the
EDZL algorithm even for the runtime scheduling perfor-
mance. Given that the RMZL algorithm still inherits the
nice properties of fixed-priority algorithms, such as imple-
mentation simplicity and response time predictability, we
believe that it is a good choice as a scheduling algorithm for
future multicore systems.

5.2 Practice Experiments

We next evaluate the practice performance of the RMZL
algorithm, using the LITMUSRT operating system [7] and
the Intel Core 2 Duo and Quad processors operating at
1.83GHz and 2.0GHz respectively. All the scheduling algo-
rithms tested are implemented as the LITMUSRT scheduler
plugins. To detect the zero-laxity condition for the RMZL
algorithm, the laxity check procedure is added to the sched-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 13. Simulation results for runtime
scheduling on 8 CPU cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic
EDZL

Figure 14. Simulation results for runtime
scheduling on 16 CPU cores.

uler tick function. In our experiments, busy-loop tasks con-
suming the assigned WCETs are used to measure the run-
time scheduling performance. The utilizations, the periods,
and the WCETs of the tasks are determined by the same
method as the one presented in Section 5.1. The number of
tasks in each task set is however reduced to 100 and the test
duration of each experiment is set at 30 seconds in consid-
eration of the total time consumption.

Figure 15 and 16 show the experimental results for the
runtime scheduling ability of each scheduling algorithm on
the Intel Core 2 Duo and Quad processors. Like simula-
tion studies, the RMZL algorithm outperforms the Rate-
Monotonic and the RM-US algorithms. The performance
difference between the RMZL algorithm and the other al-
gorithms is however decreased as compared to the simula-
tion cases. The performance decrease for the RMZL algo-
rithm is mainly caused by the runtime overhead. While the
Rate-Monotonic and the RM-US algorithms simply assign
static priorities to the tasks, the RMZL algorithm needs to
check the laxity of the current task at every scheduler tick
and change its priority if necessary. However, we still claim
that non-trivial performance improvements are achieved by
the RMZL algorithm in practice.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RM-US
Rate-Monotonic

Figure 15. Experimental results for runtime
scheduling on the Core 2 Duo processor.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

RMZL
RMUS
Rate-Monotonic

Figure 16. Experimental results for runtime
scheduling on the Core 2 Quad processor.

6 Conclusions

In this paper, we have presented the Rate-Monotonic
until Zero Laxity (RMZL) algorithm, which applies the
laxity-driven priority promotion strategy to the global Rate-
Monotonic algorithm. We also have derived the schedula-
bility test and the tardiness bound for the RMZL algorithm,
based on the prior schedulability analytical results. Accord-
ing to our evaluation, the RMZL algorithm is able to ac-
cept more task sets than the Rate-Monotonic and the RM-
US algorithms by schedulability test. In fact, the RMZL
algorithm is competitive with and is even better for a larger
number of CPU cores than the EDZL algorithm. We also
have shown that the RMZL algorithm in practice outper-
forms the Rate-Monotonic and the RM-US algorithms on
the real-world machines.

In future work, we will consider more strict schedulabil-
ity analysis for the RMZL algorithm, since our evaluation
shows that the presented schedulability test is pessimistic,
while it outperforms the existing fixed-priority algorithms.
We are also interested in deriving the upper bound on the
system utilization where any task sets are schedulable un-

der the RMZL algorithm, given that scheduling algorithms
are often compared in terms of this schedulable system uti-
lization. In addition, implementation issues, such as how to
detect the zero-laxity condition, are still left open for future
work.

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priority
scheduling on mutiprocessors. InProceedings of IEEE Real-
Time Systems Symposium, pp. 193–202, 2001.

[2] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. InProceedings of the IEEE Real-
Time Systems Symposium, pp. 120–129, 2003.

[3] S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of
periodic tasks on multiple resources. InProceedings of the
International Parallel Processing Symposium, pp. 280–288,
1995.

[4] M. Bertogna and M. Cirinei. Response-time analysis for
globally scheduled symmetric multiprocessor platforms. In
Proceedings of the IEEE International Real-Time System
Symposium, pp. 149–158, 2007.

[5] M. Bertogna, M. Cirinei, and G. Lipari. Improved Schedu-
lability Analysis of EDF on Multiprocessor Platforms. In
Proceedings of the Euromicro Conference on Real-Time Sys-
tems, pp. 209–218, 2005.

[6] G. Buttazzo. Rate monotonic vs. EDF: Judgement day.
Real-Time Systems, 29(1):5–26, 2005.

[7] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers. InProceedings of the
IEEE Real-Time Systems Symposium, pp. 111–123, 2006.

[8] J. Carpenter, S. Funk, P. Holman, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor
scheduling problems and algorithms, chapter 30. CHAP-
MAN & HALL /CRC, 2004.

[9] H. Cho, B. Ravindran, and E. Jensen. An optimal real-time
scheduling algorithm for multiprocessors. InProceedings
of the IEEE Real-Time Systems Symposium, pp. 101–110,
2006.

[10] M. Cirinei and T. P. Baker. EDZL Scheduling Analysis. In
Proceedings of the Euromicro Conference on Real-Time Sys-
tems, pp. 9–18, 2007.

[11] S. Dhall and C. Liu. On a real-time scheduling proglem.
Operations Research, 26:127–140, 1978.

[12] S. Lee. On-line multiprocessor scheduling algorithmsfor
real-time tasks. InProceedings of the IEEE Region 10’s An-
nual International Conference, pp. 607–611, 1994.

[13] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time tasks.Performance
Evaluation, Elservier Science, 22:237–250, 1982.

[14] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.Journal of the
ACM, 20:46–61, 1973.

[15] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Utilization
bounds for EDF scheduling on real-time multiprocessor sys-
tems.Real-Time Systems, 28:39–68, 2004.

[16] A. Mok and M. Dertouzos. Multiprocessor scheduling in
a hard real-time environment. InProceedings of the Texas
Conference on Computer System, 1978.

8

