Global Rate-Monotonic Scheduling with Priority Promotion *

Shinpei Katd*, Akira Takeda, and Nobuyuki Yamasaki
"Department of Electrical and Computer Engineering, Camitgllon University
fDepartment of Information and Computer Science, Keio Usitg

Abstract such as Earliest Deadline First (EDF) [14] and Least Lax-
ity First (LLF) [16], likely achieve better system utilizah

In this paper, we consider a multicore real-time schedul- under deadline constraints. Other issues to be compared
ing algorithm incorporating benefits of both fixed-priority between the the fixed-priority and the dynamic-priority ap-
and dynamic-priority disciplines. Specifically, the algo- proaches are reported in [6].
rithm first assigns globally{gective priorities to real-time As for multicore extensions, one often discusses and
tasks statically, based on the well-known Rate-Monotoniccompares global and partitioned scheduling schemes. In a
scheduling policy. It may however change the task priagitie global scheduling scheme, all tasks are conceptuallydtore
at runtime, only when the tasks reach the zero-laxity condi- in a global queue, and at any moment thaighest-priority
tion, where no slack remains until the deadline, to avoid tim tasks, if any, are scheduled onCPU cores. Task migra-
ing violations as much as possible. Implementation simplic tions may therefore be exploited. In a partitioned schedul-
ity and response time predictability are therefore inhedit ing scheme, on the other hand, each CPU core has its own
from the fixed-priority discipline, while minimal dynamic- task queue. Each task is then assigned to a specific CPU
priorities are exploited, if necessary, to maintain theteys core, and is scheduled on the local CPU core without migra-
to be schedulable as much as possible. We also providetions. Indeed, there are relative merits in the two scheduli
a schedulability analysis and derive a schedulability test schemes. Global scheduling algorithms, such as Pfair [3],
for the algorithm. Our evaluation then demonstrates that LLREF [9], and EDZL [12], are potentially able to maintain
the algorithm outperforms the existing global fixed-pripri the system schedulable even with high-utilization task,set
scheduling algorithms in terms of schedulability. whereas partitioned scheduling algorithms, such as EDF-FF
[11] and EDF-FFD [15], allow us to ignore runtime over-
head and complexity regarding task migrations. The sum-
mary of the two scheduling schemes is reported in [8].

This paper presents multicore global real-time schedul-
_ ing with efficient priority assignments, where benefits of

The advent of multicore technology has accelerated apoth fixed-priority and dynamic-priority disciplines are i
better use of computing systems. Due to further successfulcorporated, Specifically, we propose a scheduling algo-
development of low-power chips, multicore platforms are rithm, called Rate-Monotonic until Zero Laxity (RMZL),
becoming to be used commonly even in embedded real-timeyhich applies a laxity-driven priority promotion strategy
systems, where energy constraints are usually inposed. Readopted in the EDZL algorithm to the Rate-Monotonic al-
cently, the real-time systems community has therefore beeryorithm. The primary advantage of the RMZL algorithm
interested in extending resource management schemes intg that it provides any task sets schedulable under the Rate-
the multicore context. In particular, much attention istgei Monotonic algorithm with implementation simplicity and
paid to studies on multicore real-time scheduling, given th response time predictability as the Rate-Monotonic algo-
natural need for concurrency management on multiple CPUrithm does, while it maintains the system to be schedula-

1 Introduction

cores. _ ble as much as the EDZL algorithm does, far beyond the
Traditionally, one often discusses and compares Rate-Monotonic algorithm can do.
fixed-priority and dynamic-priority scheduling algoritism The rest of this paper is organized as follows. Sec-

Fixed-priority algorithms, such Rate-Monotonic (RM) [14] ' tion 2 describes our system model, including assumptions
and Deadline Monotonic (DM) [13], usually lead to sim- and terminologies used in this paper. Section 3 presents the
pler system implementation and better response time preRMZzL algorithm and its properties, and Section 4 provides
dictability. On the other hand, dynamic-priority algorits, jts schedulability analysis. The schedulability perfonoe

*This technical report is an English-version of the artiséth slight C.'f the RMZL algonthm IS evall.'lated thrOUQh.bOth simula-
modifications and extensions, published in the IPSJ Traiosacon Ad- tion .StUd|eS and practice experiments in Section 5. We sum-
vanced Computing System (ACS), Vol. 2, No. 1, pp. 64—74, M&@08. marize our concluding remarks in Section 6.

2 System Model 1. while TRUEdo
2 if some jobr; j is releasedhen
The system is composed af CPU cores. A task set 2 en(?iSfSign the Rate-Monotonic priority t0;;
includingn tasks, denoted by = {r1, 72, ..., T}, iS given to : ; . .
the systgm. Each task is r:gresented by a tuppgljéi(Ti), 2' i tg:?xr'lnt'hoef ﬁiorﬂg ijhrii’z:i’tecg‘_es zerthen
whereC; andT; are theworst-case execution time (WCET) 7 end if 9 9 priorty ta;;
and theperiod of 7; respectively. Tasks im are assumed 8 if there are more tham jobs in the ready queuen

© ¢

to be sorted in non-decreasing order of periods, Te.< schedule then highest-priority jobs:

T, < ... < Ty holds. Theutilization U; of 7; is defined to 10. else

beU; = Ci/T;, and the total utilizatiotJ () of the tasks in 11. schedule all the jobs in the ready queue;
7 is defined to bdJ(7) = 3., Ui. In particular, we use a 12. end if

word “system utilizatiohfor U(r)/m, which indicates the 13. end while

total utilization of the tasks normalized by the number of

CPU cores. Figure 1. The RMZL algorithm.
Each taskr; produces an infinite sequence of jobs peri-

odically. Thekth job of 7; is denoted byr;x. Therelease

time and thedeadlineof 7k are denoted by; x anddi x re- algorithm. Specifically, it schedules jobs according to the
spectively. Note thath x = rix.1 = rix + Tk holds for any Rate-Monotonic algorithm until some jobs reach the zero-
Tik- We also denote theemaining execution timef 7 at laxity condition, and the priorities of these zero-laxiop

timet by Ci k(t). Thelaxity L;x(t) of 7ix at timet is thende- are immediately promoted to the top to avoid timing vio-

fined to beL k(t) = dik-+c, - The laxity of a job directly lations. Figure 1 illustrates the pseudo-code of the RMZL
reflects the degree of urgency to meet its deadline. The lessigorithm. Every time some job is released, it is first as-
the laxity of a job is, the more the job is urgent. In partic- signed the Rate-Monotonic priority (line2-4). However, if

ular, when the laxity of a job becomes zero, the job is said the laxity of some job becomes zero, priority promotion is
to be in thezero-laxitycondition. The absolute value of the exploited (line 5-7). At any moment, jobs are scheduled
laxity is also called theardiness when the laxity becomes according to their priorities (line 8-12). It should be ribte

negative. The tardiness indicates the amount of time behindthat it depends on system implementation how to deal with

the deadline. _ _ _ ~ the case where more thamnjobs have the zero-laxity condi-
~When all CPU cores are occupied by jobs with priorities tion. In such a case, some job inevitably has negative laxity
higher than a ready job x, 7ix is said to beblocked All which means that the job would miss its deadline if its exe-

tasks are preemptive and independent of each other. Naution time is equal to the WCET. If we consider hard real-
more than one CPU core executes the same job at the samgme systems, this case should never happen. If we consider
time. Once the system begins running, no tasks join andsoft real-time systems, on the other hand, this case may hap-
leave there dynamically. pen, and our solution is to keep jobs with negative laxity be-
A task set to be schedulable under a scheduling algo-ing assigned the highest priority so that they can complete
rithm means that all jobs in the task set are guaranteed taas early as possible.
scheduled by the scheduling algorithm, without any dead- Figure 2 shows a simple example that demonstrates how
line misses. The schedulability test is a function that-veri the RMZL algorithm outperforms the Rate-Monotonic al-
fies whether or not the given task set is schedulable undergorithm on two CPU cores, regarding task set {r; =
the given scheduling algorithm. Any scheduling algorithms (2, 3), 7, = (2, 3), 73 = (2, 3)}. For simplicity, let us assume
used in hard real-time systems must contain explicit schedu that ties are broken in favor of lower-indexed tasks. Since
lability test functions. In soft real-time systems, meail&h +, andr, are scheduled first;z; misses a deadline under
explicit schedulability test functions may not be necegsar the Rate-Monotonic a|g0rithm_ Howeveg,can preempt;
though the tardiness of each task is desired to be bounded igjue to the zero-laxity condition under the RMZL algorithm,
advance so that quality of service is guaranteed at a certailand as a result, all the tasks successfully meet deadlines.
level. Itis also preferable for the scheduling algorithribéo Work-conserving property: The RMZL algorithm
work-conservingvhen response times are important in the js work-conserving as the Rate-Monotonic algorithm is.
system. Here, the scheduling algorithm is said to be work- gpecifically, the system never becomes idle as long as there
conserving, if it has a property to ensure that the systemare ready jobs. The average response time of the system is

does not become idle in the presence of ready jobs. therefore maximized. This property improves the average
)) response time in particular when the system load is low, as
3 The RMZL Scheduling Algorithm compared to such algorithms that are not work-conserving.

Domination property: The RMZL algorithm strictly
We now present the RMZL algorithm. The RMZL al- dominates the Rate-Monotonic algorithm under the worst-
gorithm applies the laxity-driven priority promotion dtrta case assumption, given the fact that the RMZL algorithm
egy adopted in the EDZL algorithm to the Rate-Monotonic changes task priorities only when some jobs are verified to

- _ i T _ i by schedulability test, given that the Rate-Monotonic algo
1 ! rithm is able to accept more task sets than the EDF algo-
T, -) rithm by schedulability test [4]. We show thifect by sim-
ulation studies in Section 5.

4 Schedulability Analysis

(@) (b) In this section, we present the RMZL schedulability
analysis. Our approach is based on the response time analy-
sis (RTA) for globally-scheduled systems [4] and the EDZL
schedulability analysis [10]. Before providing our anadys

we define the following terms and terminologies.

Figure 2. Example: (a) Rate-Monotonic
scheduling and (b) RMZL scheduling.

Definition 1 (Interference) Interference |(a, b) to taskry
in interval[a, b) is a cumulative length of intervals [@, b),

T4 j i T T l for which 7y is blocked by higher-priority tasks and can-
> 1 -> not execute. The contribution of each individual tasko

w |, - | ebistendenoedbjab)

T3 L-> T3 __‘fy Definition 2 (Work). Work W(a, b) for taskry in interval

[a, b) is the total amount of time that must be consumed by
[I ' L | ' 7k in [a, b) under the given timing constraints.

deadline miss!

(a) (b) Regarding the interference, we provide Lemma 1.
Lemma 1. All global scheduling algorithms hold Condi-

Figure 3. Example: (a) Rate-Monotonic tion (1), where x is any positive value.

scheduling and (b) RM-US scheduling.

l(a,b) = x & > min(li(a b),) > mx (1)
izk
reach the zero-laxity condition. In other words, any task se
that are schedulable under the Rate-Monotonic algorithmProof. The proof is subject to the EDF schedulability anal-

are also schedulable under the RMZL algorithm, if all the ysis provided by Lemma 4 in [5]. O
execution times are equal to the WCETSs. Hence, the RMZL])
algorithm inherits all the properties of the Rate-Monotoni ~ Our analysis proceeds as follows. LEtbe a job of each

algorithm, such as implementation simplicity and responsetaSKTk' which executes with the worst-case response time.
time predictabilit. Meanwhile, another global schedul- Let alsoR{ be the upper bound on the response time of
ing algorithm derived from the Rate-Monotonic algorithm, 7«. We first obtain the upper bouri¢ on the interference
called RM-US [1], does not dominate the Rate-Monotonic to J; in interval [r;,r;; + RI|. We then deriveR!® based
algorithm. The RM-US algorithm statically assigns the on | andCy. Note that the lower bound? on the laxity
highest priority to such tasks that have utilization greate of 5 job of 7, is computed byR¥ — T. According to the
thanm/(3m - 2). Figure 3 shows a simple example where Rz algorithm, if more thamm jobs reach the zero-laxity
task setr = {11 = (1.2).72 = (3,4).73 = (3,4)}is schedula- ¢ongition at the same time, Hence, the necessary condition

ble under the Rate-Monotonic algorithm, while itis notun- for the RMZL algorithm to cause deadlines to be missed is
der the RM-US algorithm. As one can see, all the tasks areihat| > < 0 is true form + 1 tasks and one of them strictly

successfully scheduled by the Rate-Monotonic algorithm. holdsk

H > deadli der the RM-US algorith LE’ < 0. In fact, this is the same condition for the
loweverr, misses a deadline under the RM-US algorithm, g7 15 cause deadlines to be missed, as presented in [10].
sincer, andrs are scheduled in priority due to their utiliza-

: Now, we obtain * as follows.
tion.

Comparison with EDZL: We now compare the RMZL | emma 2. The contribution (a, b) of 7; to the interference

algorithm with the EDZL algorithm. Both the two algo- o 7, in interval[a, b) does not exceed work; &, b) of 7; in
rithms use the same priority promotion strategy. However, [4, b,

the RMZL algorithm is more predictable than the EDZL al-

gorithm in terms of response times, since it is based on theProof. A task interfere with another only when it is exe-
fixed-priority approach. The RMZL algorithm is also ex- cuted. Itis therefore trivial from the definitions of theent
pected to accept more task sets than the EDZL algorithmference and the work. O

Lemma 3. Work W®(r;,r; + RIP) of task; in interval T;

[rere + Rgb), which interferes with tasky is computed by .

Equation(2), when task set = {r1, ..., 7n} iS scheduled by 1 §
1

theRMZL algorithm on m CPU cores, where(ﬁ’;b) is ob- Ti
tained by Equatior3).

VViUb(I’*, 4 Rkub) _ VV:Jb(REb) T T
nik(R’Klj(b)Ci Tk - - .

Y
Y

—{+minCLRE+ T —C - n(ROT) (<K (2) I
Ci i>K h b "
i (i>Kk) R‘]‘(
b.T _C Figure 4. Case i > k

ouby RS+ Ti -G

(RO = |~ — J ®3)

Ti-Ci T,
Proof. We first consider task that has a longer period than “n «— >

Y

1

1
taskry, i.e.,i > k. According to the RMZL algorithm, in ' '
order forr; to interfere withry, it is necessary for; to have T _ T i @ T
zero-laxity, sincer; is assigned a lower priority when its '
laxity is positive. The work ofr; is therefore maximized ' '
when each job of; executes fo€; time units at the very end
of the period. As seen in Figure 4, the workmfindicated Ty i

by the shaded area in Figure 4, is no greater hakence,

Y

Work WH(ry ry + RUP) must satisfy Condition (4). rg; .
< b L4
Wi(ry, T+ R) < G (4) Ry
We next consider task that has a shorter period thap Figure 5. Case i <k

i.e.,i < k. Itis clear from the prior discussion that the work

of a job ofrj which has a release time before and a deadline

within the interval under consideration is maximized when known from Lemma 3. According to the definition of the
the job executes fo€; time units at the very end of the interference, however, the interferencertois no greater
period. The work of a job of; which has a release time than R;jb — Ck. Otherwise, the response time af would
within and a deadline after the interval under consideratio exceed?}jb. This observation leads to Lemma 4.

is, on the other hand, maximized when the job executes for

Ci time units at the very beginning of the period. Now, we Lemma 4. The response time of task does not excefd R

claim that the work ofrj is maximized when the job aof; if Condition(6) is satisfied.

which has a release time before and a deadline within the

interval under consideration is released at tirfrenamely Z min(Ii(R?), R — Cy + 1) < MR- C + 1) (6)
whenJ is released at the same time, as shown in Figure 5. T

Figure 5 implies that the numbe;(R;jb) of jobs which can . N .
execute folC; time units Comp|ete|y inri;’ rl’;+ sz) is given Proof By Lemma 1, the followmg condition holds if Con-
by Equation (3) dition (6) holds.

The work of a job executing at the end of the interval un- b
der consideration, indicated by the shaded area in Figure 5 |k(RkUb) <(R°-C+1)
is bounded by mir@;, R® + T; — i — ni(R\)T)). Hence,

Condition (5) must hold. Hence, the interference & is no greater thaR}(‘b - Cx,
andJy can complete bﬂ(‘b by the definition of the interfer-
Wi(rg, i, + REP) ence. O

< n(ROC +min(C, R + T - C - ni(ROT) (5)

Lemma 4 implies that the contribution of each task

The lemma is thus true. O to the interference to task is bounded bymin(WH?, RIP —
Ck + 1). The above discussion leads to the upper bound on
The upper bound on the contribution of each tasko the response time of each task under the RMZL algorithm

the interference to task in interval [ry, ry + RE”) is now as follows.

Theorem 1(RTA for RMZL). The upper bound on the re-
sponse time of task under theRMZL algorithm is ob-
tained by solving fixed-point iteration for Expressi@jpbe-
ginning with R® = C,, wherel}(R!") is computed by Equa-
tion (8) and WP(RIP) is given by Equatiof2).

b Cit Z § (sz)} (7)
|¢k
L(RE) = min(WEo(REP), R - C + 1) (8)

Proof. We provide proof by contradiction. Specifically, we
assume that the convergent vaIueRﬁ'P is greater than the

response time ofy. The convergent value cR;jb is com-
puted by the following expression.

R = Cicr |1 minGW(RE), RP - G+ 1)

|¢k

By Lemma 2,W"P(R) > 1} (ry, ry + RU®) holds. There-
fore, the following condition must hold.

= Z min(1(R), R® - Cy + 1)}

|¢k

REbZCk+

By our assumption and Lemma 4, the following condi- beginning with B® =

tion must also hold.

R > Cy + =R +1

This is a contradiction. The theorem is thus true. O

Em(Rﬁb— Ck+1)

Ti-G b
“n o

Tii-jT i@T

i-lT

< N
< Ll

ub
Ry

Y

Tk

Y

Figure 6. Case i < kin the improved analysis.

b 8
n(Re) = | BT

(11)

~C—Lb
T

The refined upper bound on the response timeyas
given by Theorem 3.

Theorem 3(Refined RTA for RMZL) The upper bound on
the response time of task under theRMZL algorithm is
obtained by solving fixed-point iteration for Express{@j
Cx, Wherel'(REb) is computed by

Equation(8) and W*(R") is given by Equatiog10).

Theorem 4 (Refined RMZL test) . Task set = {r1, ..., Tn}

is schedulable under the RMZL algorithm on m CPU cores,
unless at least m 1 tasks satisfy Conditio(®) and one of
them strictly holds< in Condition(9), where F&b is given by

As discussed before, the necessary condition for theTheorem 3.

RMZL algorithm to cause deadlines to be missed is that

more thanm tasks satisfy_{f’ < 0 and one of them strictly

hoIdsLLb < 0. Finally, the schedulability test for the RMZL
algorithm is derived as follows.

Theorem 2(RMZL test). Task set = {r3, ..., Tn} IS schedu-

Tardiness Bound: In soft real-time systems, or in any
system where soft real-time tasks exist, the tardiness from
the deadline is desired to be bounded for each soft real-time
task. Under the RMZL algorithm, the tardiness bound is
easily derived by using the upper bound on the response

lable under the RMZL algorithm on m CPU cores, unless tjme.

at least m+ 1 tasks satisfy Conditio(@) and one of them
strictly holds< in Condition(9), where ng is given by The-
orem 1.

LP=T«-RP<0 (9)

The schedulability test derived in Theorem 2 can be im-

proved. If the response time of which interfere with task
7k IS known, the contribution of; to the interference to

Theorem 5 (Tardiness bound for RMZL) The tardiness
bound for taskry executing in the system scheduled by the
RMZL algorithm on m CPU cores is obtained by Equa-
tion (12), where ng is given by Theorem 3.

tardinesgry) = R® - Ty (12)

7 can be underestimated by taking into account the lower5 Evaluation

bound on the laxity ot;. Figure 6 depicts the case where
L is taken into account. Now, Equation (2) and (3) can be

rewritten as follows.
WE(rg, T + RE%) = WEP(RYP)
ni(R}(‘b)Ci + min(Ci,
Wb +Ti-Ci — L!b - ni(REb)Ti) (i <Kk
Ci (i>Kk

(10)

We now provide a quantitative evaluation of the RMZL
algorithm. Our performance metric is taccess ratiae-
fined by the following formula, which indicates the abil-
ity of a scheduling algorithm to successfully schedule give
task sets.

of successfully scheduled task sets
of scheduled task sets

Success Ratie

Success ratio

—— RMZL o R
02 [—*— RM-US | Lo
""" *---- Rate-Monotonic s
e EDZL | X
0 L I~ N3 * S St
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 7. Simulation results for schedulability
test on 2 CPU cores.

1 ® 4
X 8
X a
L x, € |
o B >
® :L “><~
g 06 ,‘1‘: \X\ 4
g o™
3 04r: \x\ g
—“—+— RMZL x K
0.2 | % RM-US Y & 1
""" % Rate-Monotonic S o
. EDZL ey Ty
0 % N3 N3 * S = N3
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 8. Simulation results for schedulability
test on 4 CPU cores.

In our evaluation, we compare the RMZL algorithm with
the two well-known fixed-priority scheduling algorithms:
Rate-Monotonic and RM-US. We also in part compare it
with the EDZL algorithm that adopts the same priority pro-
motion strategy as the RMZL algorithm under a dynamic-
priority discipline.

5.1 Simulation Studies

We first study the performance of the RMZL algorithm

0.8 r

8
g
o 0.6 - 4
1%
Q
(5]
5 04t i
a O
—— RMZL
0.2 | - RM-US b
""" *---- Rate-Monotonic AV
g EDZL X
0 - * N N * -
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 9. Simulation results for schedulability
test on 8 CPU cores.

1 . ,
x|
i
0.8 | 1
k) X,
3 \
o 0.6 - 4
1%
Q
(5]
S 04 ,
3 0
—+— RMZL
0.2 f —x— RM-US :
""" = Rate-Monotonic X
& EDZL .,
0 * N N * o= R &
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 10. Simulation results for schedulabil-
ity test on 16 CPU cores.

successfully scheduled if they are verified to be schedelabl
by the schedulability test. For simplicity, the schedulabi
ity tests presented in [2] are used for the Rate-Monotonic
and the RM-US algorithms. Those for the RMZL and the
EDZL algorithms are respectively provided by Theorem 4
in this paper and Theorem 3 in [10]. These results demon-
strate that the RMZL algorithm outperforms the traditional
fixed-priority scheduling algorithms, i.e., Rate-Monaton
and RM-US in terms of hard real-time schedulability test
guarantees. Since the current state of the art in global

through simulations. Each simulation generates a randomscheduling analysis is still pessimistic in particular whe
task set including 1000 tasks. The system load to be pro-a large number of CPU cores is given, the absolute success
duced by the task set is determined by two parameters: thgatios decrease as the number of CPU cores increase. Es-

numberm of CPU cores and the system utilizatidhs

Due to space constraints, we show only the results with lim-

ited characteristics of task sets as follows. For each tisk s
7, the utilizations of the tasks are uniformly set within rang
[0.01,1.0] so thatUsys = 3, Ui/mis satisfied. The task
periods are also uniformly set within range [18000], and
the WCET for each task is computed byC; = U;T;.

Figure 7, 8, 9, and 10 show the simulation results for the

schedulability test ability of each algorithm on 2, 4, 8, and

pecially, the Rate-Monotonic algorithmf$er from a larger
number of CPU cores due to the well-known Dhall’s ef-
fect [11]. One can also observe that it is competitive with
and even better for a large number of CPU cores than the
EDZL algorithm. Such superiority comes from the fact that
the global scheduling analysis is less pessimistic for fixed
priority algorithms than dynamic-priority algorithms [4]
Figure 11, 12, 13, and 14 show the simulation results
for the runtime scheduling ability of each algorithm on 2,

16 CPU cores respectively. Here, task sets are said to bet, 8, and 16 CPU cores respectively. Here, task sets are

1 g i*‘% 1 # **;;*X i
Fe, x N
*‘X N 4
k! 081 T k! 081 R
E § E ‘%“
@ 06 A o 06 \
]] X
a 04 a 04 \;%5; 1
—— RMZL —— RMZL Sy
02 [—*— RM-US 0.2 - RM-US \ 1
""" - Rate-Monotonic - Rate-Monotonic N
0 h L EDZL L L L L 0 h L EDZL L L L L) \\%-
03 04 05 06 07 08 03 04 05 06 07 08 09 1
System utilization System utilization
Figure 11. Simulation results for runtime Figure 13. Simulation results for runtime
scheduling on 2 CPU cores. scheduling on 8 CPU cores.
1 e = g 1 1 TR -
0.8 | x B 0.8 | X 1
o % 2 RN
s By s
o 06 ’-ft% p » 06| %\]
8 2 n
3 04r ‘?\;é\ 3 3 04r * g
—+— RMZL % —+— RMZL
02} > RM-US 02 | —>— RM-US X, 1
""" - Rate-Monotonic %, - Rate-Monotonic %,
s EDZL .. o EDZL ..
0 L L L L L L e 0 L L L L L X
03 04 05 06 07 08 09 1 03 04 05 06 07 08 09 1
System utilization System utilization
Figure 12. Simulation results for runtime Figure 14. Simulation results for runtime
scheduling on 4 CPU cores. scheduling on 16 CPU cores.

said to be successfully scheduled if they are actually sched uler tick function. In our experiments, busy-loop tasks-con
uled without any deadline misses in 1000000 simulation suming the assigned WCETs are used to measure the run-
time units. As compared to the schedulability test results, time scheduling performance. The utilizations, the pesjod

all the algorithms achieve much higher success ratios. Thisand the WCETSs of the tasks are determined by the same
means that there are still huge gaps between analysis anthethod as the one presented in Section 5.1. The number of
practice, which should be mitigated in the future. One can tasks in each task set is however reduced to 100 and the test
remark that the RMZL algorithm is competitive with the duration of each experiment is set at 30 seconds in consid-
EDZL algorithm even for the runtime scheduling perfor- eration of the total time consumption.

mance. Given that the RMZL algorithm still inherits the Figure 15 and 16 show the experimental results for the
nice properties of fixed-priority algorithms, such as imple runtime scheduling ability of each scheduling algorithm on
mentation simplicity and response time predictability, we the Intel Core 2 Duo and Quad processors. Like simula-
believe that it is a good choice as a scheduling algorithm for tion studies, the RMZL algorithm outperforms the Rate-

future multicore systems. Monotonic and the RM-US algorithms. The performance
_ _ difference between the RMZL algorithm and the other al-
5.2 Practice Experiments gorithms is however decreased as compared to the simula-

tion cases. The performance decrease for the RMZL algo-

We next evaluate the practice performance of the RMZL rithm is mainly caused by the runtime overhead. While the
algorithm, using the LITMUST operating system [7] and Rate-Monotonic and the RM-US algorithms simply assign
the Intel Core 2 Duo and Quad processors operating atstatic priorities to the tasks, the RMZL algorithm needs to
1.83GHz and 2.0GHz respectively. All the scheduling algo- check the laxity of the current task at every scheduler tick
rithms tested are implemented as the LITMUScheduler and change its priority if necessary. However, we stillralai
plugins. To detect the zero-laxity condition for the RMZL that non-trivial performance improvements are achieved by
algorithm, the laxity check procedure is added to the sched-the RMZL algorithm in practice.

Figure 15. Experimental results for runtime

System utilization

scheduling on the Core 2 Duo processor.

1 e
=N
0.8 r
2
s
o 06 W
] *,
Q ~,
S 04t K
a3 o
02 F —— RMZL X
—-c— RM-US
oL oo the-Monotoniq ‘ ‘
0.5 0.6 0.7 0.8 0.9

der the RMZL algorithm, given that scheduling algorithms
are often compared in terms of this schedulable system uti-
lization. In addition, implementation issues, such as tmw t
detect the zero-laxity condition, are still left open fotte
work.

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priorit
scheduling on mutiprocessors.Pnoceedings of IEEE Real-
Time Systems Symposiupp. 193-202, 2001.

[2] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. IRroceedings of the IEEE Real-
Time Systems Symposiupp. 120-129, 2003.

[3] S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of
periodic tasks on multiple resources. Proceedings of the
International Parallel Processing Symposiupp. 280—288,
1995.

[4] M. Bertogna and M. Cirinei. Response-time analysis for
globally scheduled symmetric multiprocessor platforms. |
Proceedings of the IEEE International Real-Time System
Symposiumpp. 149-158, 2007.

[5] M. Bertogna, M. Cirinei, and G. Lipari. Improved Schedu-
lability Analysis of EDF on Multiprocessor Platforms. In
Proceedings of the Euromicro Conference on Real-Time Sys-

1 I S
X % ""f**»x——
08 | *
9o %
g
o 06 |
0
Q
Q
o 8
3 04r -
02} —— RMZL L
—-e— RMUS S0
""" *---- Rate-Monotonic R
0 1 1 1 1 X
0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 16. Experimental results for runtime
scheduling on the Core 2 Quad processor.

6 Conclusions

In this paper, we have presented the Rate-Monotonic
until Zero Laxity (RMZL) algorithm, which applies the

laxity-driven priority promotion strategy to the globaltea

Monotonic algorithm. We also have derived the schedula-

(6]
(7]

(8]

(9]

[10]

bility test and the tardiness bound for the RMZL algorithm, [11]

based on the prior schedulability analytical results. Adeo

ing to our evaluation, the RMZL algorithm is able to ac-

[12]

cept more task sets than the Rate-Monotonic and the RM-

US algorithms by schedulability test. In fact, the RMZL
algorithm is competitive with and is even better for a larger
number of CPU cores than the EDZL algorithm. We also

[13]

have shown that the RMZL algorithm in practice outper- [14]

forms the Rate-Monotonic and the RM-US algorithms on

the real-world machines.

In future work, we will consider more strict schedulabil-
ity analysis for the RMZL algorithm, since our evaluation

[15]

shows that the presented schedulability test is pessonisti [16]

while it outperforms the existing fixed-priority algoritlem

We are also interested in deriving the upper bound on the

system utilization where any task sets are schedulable un-

tems pp. 209-218, 2005.

G. Buttazzo. Rate monotonic vs. EDF: Judgement day.
Real-Time System29(1):5-26, 2005.

J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUS": A testbed for empirically comparing
real-time multiprocessor schedulers. Rroceedings of the
IEEE Real-Time Systems Symposipm 111-123, 2006.

J. Carpenter, S. Funk, P. Holman, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor
scheduling problems and algorithmshapter 30. CHAP-
MAN & HALL /CRC, 2004.

H. Cho, B. Ravindran, and E. Jensen. An optimal real-time
scheduling algorithm for multiprocessors. Broceedings

of the IEEE Real-Time Systems Symposipm 101-110,
2006.

M. Cirinei and T. P. Baker. EDZL Scheduling Analysis. In
Proceedings of the Euromicro Conference on Real-Time Sys-
tems pp. 9-18, 2007.

S. Dhall and C. Liu. On a real-time scheduling proglem.
Operations Resear¢t26:127-140, 1978.

S. Lee. On-line multiprocessor scheduling algorithims
real-time tasks. IfProceedings of the IEEE Region 10's An-
nual International Conferencep. 607—611, 1994.

J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic real-time taskerformance
Evaluation, Elservier Scienc@2:237-250, 1982.

C. Liu and J. Layland. Scheduling algorithms for muitip
gramming in a hard real-time environmentournal of the
ACM, 20:46-61, 1973.

J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Ultilization
bounds for EDF scheduling on real-time multiprocessor sys-
tems.Real-Time System28:39-68, 2004.

A. Mok and M. Dertouzos. Multiprocessor scheduling in
a hard real-time environment. Proceedings of the Texas
Conference on Computer Systelfi78.

